Mulkerin Associates Inc.

5th Integrated CNS Conference & Workshop

Communications-Supported Concepts for Highjacked Aircraft

Tom Mulkerin

May 3, 2005

7405 Alban Station Ct., Suite B-201, Springfield, VA, 22150-2318, (703) 644-5660

Outline

- Background
- **■** Presentation Focus & Concepts
- **■** Scenario
- **■** Communications Architecture
- Aircraft/FAA & TSA Communications
- **■** Panic Button
- Aircraft Video/Audio Surveillance
- Remote Flight Plan Monitoring
- Conclusion

Background

- Aviation security emphasis changed dramatically after September 11, 2001
 - Context of threat has changed
 - Aircraft can be used as a weapon
 - Passengers became obstacles
- Additional tools needed to deal with highjacking
 - Increased emphasis on early detection of hostile takeover
 - Learn more about the highjackers and their intentions

Focus & Concepts

- Focus: Communications support for monitoring and reacting to activities on a highjacked commercial aircraft
- **■** Concepts discussed
 - Panic button to alert the ATC system, TSA and airline
 - Aircraft video and audio on demand to observe what is occurring on the aircraft
 - Automatic flight plan transmission to alert hijack response team of change in intended flight path
- **■** Implementation
 - Development of new equipment not required
 - New applications for existing equipment
 - Resulting in early implementation

Scenario

- ACME Air flight 123 en route from Boston to Atlanta
 - 15 minutes after departure, hijackers break into cockpit
 - Pilot actuates panic button
 - **♦** ACARS message sent to FAA's ATCSCC
 - ♦ Synthesized voice message sent over current VHF voice radio
 - **♦** Digital Flight Data Recorder records transactions
 - ◆ DFDR starts to record all video/audio inputs from onboard cameras
- ATCSCC Flight Data Processor (FDP) receives message
 - Display changed to notify ATCSCC watch personnel
 - FDP forwards message to TSA, ACME's AOC, and ARTCC responsible for aircraft
- ATCSCC, TSA, ARTCC and AOC response team coordinate actions over landline voice circuit

Scenario

- Response team wants more information about highjackers and situation onboard the aircraft
 - Command sent via ACARS message to transmit video and audio from one of the cameras in the cockpit
 - Later commands sent to change to different cameras
 - Response team learns
 - ♦ 6 highjackers onboard: 2 in cockpit and 4 in cabin
 - **♦** ACME's aircrew is still flying aircraft

Scenario

- FAA's primary and secondary surveillance radars are continually updating aircraft's location
- Response team wants to know highjackers' destination
 - Command sent to aircraft to transmit FMS flight plan
 - Shortly thereafter, aircraft transmits current flight plan
 - 10 minutes later, aircraft automatically transmits revised flight plan
 - Flight plan indicates that aircraft will change course in 6 minutes and fly towards Washington, DC.
- Applications and communications concepts employed will not end the highjacking. However,
 - FAA, TSA, airline and military personnel will gain information about the highjackers and their intent
 - Response team will have more useful information with which to develop a plan of action

Communications Architecture

Communications Architecture

- Uses existing applications and infrastructure to maximum extent reasonable
 - Least costly concepts are most likely to be accepted and funded => Implementation
- Datalink media is VDL Mode 2
 - Airlines have or will soon equip to support ACARS and ATN applications
- FAA ground network: NADIN II today and replaced by FTI as it comes online
- ARINC and SITA networks have NADIN II interfaces and will interface with FTI
- ARINC and SITA have existing ACARS systems used to exchange messages between aircraft, AOC, and FAA

Aircraft/FAA & TSA Communications

Panic Button

- Used by aircrew member to alert ATC, TSA and AOC of highjacking
- Scripted ACARS message created and transmitted
 - Contains flight information (ID, location, status, etc.)
 - Sent to the ATCSCC via VDL-2 radio and ground network
 - **◆ ATCSCC** will have predetermined static address for these messages
 - Using ACARS message takes advantage of existing ARINC and SITA infrastructures with gateways into FAA's NADIN II network
- ATCSCC forwards message to TSA, AOC and ARTCC controlling aircraft
- Synthesized voice message on current VHF ATC frequency
 - "Highjack, Highjack < aircraft tail number>"

Panic Button

■ Technical Issues

- Use of panic button type message was demonstrated by ARINC at NASA's Glenn Research Center in Jan 02
- Automatically generating synthesized voice message over analog VHF radio occurs today (e.g., UNICOMM)
- Implementation, Feasibility, Scalability & Cost
 - Technology currently available for panic button generated ACARS message
 - No additional cost associated with transmission for ACARS equipped aircraft
 - Some cost associated with modifying ACARS software
 - Synthetic voice message from aircraft via VHF radio is low cost development effort
 - Datalink and voice concepts scale well

- Video and audio on demand could be initiated by ground control center (either ATC or TSA) via ACARS message
 - Message specifies camera used for transmission
 - ◆ Surveillance system could include cameras in cabin, cockpit and cargo bays
 - Initiating message uses authentication and encryption techniques
- Pilot could initiate in response to a voice request from ATC
- Cameras are linked to video/audio system controller that formats as streaming video for transmission
 - Streaming video encrypted
 - **◆ Intercepted video shown on national TV could alert highjackers** that they are being monitored

- Video/audio controller interfaces through the CMU to VDL-2 radio
- If request initiated from ground, video sent to "from" address in ACARS message
- If pilot initiates, video sent to predetermined address at **ATCSCC**
 - ATCSCC distributes video to TSA and other organizations

■ Technology Issues

- ARINC demonstrated technology for transmitting unencrypted video via VDL-2 from aircraft to ground station
- Demonstration showed that quality of video carried over **VDL-2** needs improvement
 - **♦ VDL-2 throughput constrains number of transmitted frames per** second
- Limited bandwidth results in transmission of images and sound from only one camera at a time
- Effective authentication and encryption mechanisms needed

- Implementation, Feasibility, Scalability & Cost
 - VDL-2 radio in daily use by ARINC, SITA, and airlines for business communications between aircraft and company operations
 - VDL-2 is ACARS and ATN compliant
 - Configuring video transmission application to use existing radio and ground network is cost-effective solution
 - Using VDL-2 as communications media has best chance of implementation
 - Scalable solution since it can be deployed on multiple aircraft once it is developed

Remote Flight Plan Monitoring

- Flight Management System (FMS) maintains current flight plan onboard an aircraft
 - Flight plan is represented by series of 3-D waypoints and times when aircraft should be at each waypoint
- Flight plan is entered prior to takeoff and can be modified by aircrew while airborne
- Communications architecture provides means to send aircraft's flight plan to ground control center
- When FAA/TSA/AOC highjack response team wants to know aircraft's intended flight path
 - Encrypted ACARS message sent via VDL-2 to aircraft's CMU
 - CMU authenticates that message came from FAA or TSA
 - CMU sends FMS an instruction to prepare message containing flight plan
 - Flight plan message prepared by FMS, encrypted by CMU and transmitted via VDL-2

Remote Flight Plan Monitoring

■ Technology Issues

- New ACARS messages would have to be developed to carry the flight plan request and response information
- Currently, ACARS messages are not digitally authenticated or encrypted. Such techniques would have to be developed.
- Implementation, Feasibility, Scalability & Cost
 - ACARS and VDL-2 radio are currently operational in commercial aircraft
 - Adding authentication and encryption capabilities would add cost to system
 - Scalable solution since it can be deployed on multiple aircraft once it is developed

Conclusion

- Highjacking of commercial aircraft continues to be a potential threat to the United States
- Dealing effectively with highjackings requires
 - Early detection
 - Knowledge about the highjackers and what they are doing onboard the aircraft
 - Knowledge about aircraft's location and intended flight path
- Panic button, video/audio on demand, and flight plan transmissions concepts provide first responders in FAA, TSA and AOC with tools to more effectively deal with highjackings

Contact

Tom Mulkerin

Mulkerin Associates Inc.
7405 Alban Station Ct., Suite B-201
Springfield, VA 22150-2318
(703) 644-5660
Tom.Mulkerin@Mulkerin.com